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Abstract: The paper describes how column and arch buckling problems are handled by using 
different methods and how the results should be interpreted to get a reliable understanding of the 
phenomenon and its physical behaviour. The issue mentioned last is of main importance, when 
buckling problems are introduced to young engineers with little experience. In reality, they normally 
prefer either numerical methods or rely on codes without knowing, what they really are calculating. 
In many cases also the codes are written in such a form that the real physical behaviour cannot be 
followed. An improvement would be, if the mathematical formulation of the code procedure and 
equations at least were presented in another way and the symbols familiar from theoretical studies 
were used. The paper tackles also such issues with a suggestion for future codes dealing with the 
problems presented in the paper.  
In the present paper, theoretical studies are carried out by using traditional methods of stability. In 
the numerical calculations linear methods are used. The experimental study results are taken from 
tests carried out by the authors. The code studies are based on the relevant Eurocodes and the safety 
factors related to them are used.  
The main conclusion of the paper is that a stability process varies a lot depending on which method is 
used: analytical, numerical, experimental or design codes. Their differences make it difficult to get an 
overall view on them. They also lead to different results, which increases the engineers responsibility 
to verify the applicability of the solution. In all cases the model selection is of main importance 
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1.  INTRODUCTION  
In the modern design practice structures and structural components are getting slender and 
slender because of availability of more and more sophisticated design programs. At the 
same time structural codes are growing in volume, but not definitely in coverage of the 
problem field. This puts increased demands on the designer and especially on education of 
young engineers. Should one rely on codes covering only simple cases or should one use 
programs, whose basics and limitations are not known to the designer, especially to a young 
structural engineer? 
For understanding the real structural behaviour in stability problems theoretical background 
knowledge based on research is needed. Theories on stability, however, are not completely 
based on mathematical solutions of the governing equations, but partly also on empirical 
tests. This raises requirements to education. Codes, on the other hand, are mainly meant for 
design, and the theory behind is hardly seen. The same applies to computer programs. As a 
consequence young engineers especially are not aware, what they really are calculating 
when dealing with stability problems. 
The present paper briefly describes the theoretical and practical methods used in research, 
education and design and tries to compare them in such a way that the reader would be able 
to get an overall view on the entire field of stability problems. Examples are used to 
emphasise the practical side including codes. 

2. THEORETICAL BACKGROUND TO COLUMN AND ARCH 
BUCKLING  

2.1 Centrally loaded columns 

The cornerstone of column theory is the Euler column, a straight, prismatic, pin-ended, 
perfectly centrally loaded strut that is slender enough to buckle without the stress at any 
point in the cross-section extending the proportional limit of the material.  
The isolated column is a theoretical concept; it rarely exists in practice. Usually, a column 
forms part of a structural frame and its stability is interrelated with the stability of the entire 
structure. Now only the isolated column is of interest, because firstly, many structural 
design situations are idealized in such a way that elements can be considered as centrally 
loaded columns (e.g., truss members, arches), and secondly, a centrally loaded column 
forms a limiting point in the mathematical space defining interaction between axial and 
flexural forces of a structural member. Thus an understanding of the strength of an 
individual centrally loaded columns is essential when developing a design criteria for 
compression members in general.  
Column strength can be approximated either by using critical load theory, where the 
column is supposed to have mathematically perfect geometry, or by using the theory of 
imperfect columns, where a column and its load are slightly imperfect. The reason for this 
dual representation (i.e. perfect and imperfect) is that for practical purposes some types of 
columns (e.g. cold-formed steel and aluminium columns) can be idealized as perfect, while 
for other columns (e.g. hot-rolled or welded built-up structural steel columns) it is 
necessary to consider the effects of imperfections.  
The research results are adequately reported by Timoshenko and Gere1, Beedle2, Galambos3  
and Ylinen4. 
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2.2 Arches 

A member or structure curved in vertical plane and intended to resist external forces by 
mainly axial compression is called an arch. When the load acting on an arch increases, the 
arch loses its stability once a certain critical value of the load is attained. In the case of 
elastic structures under conservative loads, the critical load always corresponds either to a 
bifurcation point or to a stability limit point. Various possible load-displacement curves for 
arches, called as an equilibrium path, are schematically illustrated in Fig. 1 for in-plane 
instability and in Fig. 2 for out-of-plane instability, respectively. In both cases, the relative 
magnitude of the maximum loads in different cases (i), (ii), (iii) may vary in accordance 
with the respective loading conditions and structural properties. 

  
Figure 1: Load-deflection curves for in-plane 

instability 
Figure 2: Load-deflection curves for out-

of-plane instability 

When the arch configuration and the loading conditions are symmetric with respect to the 
arch crown, the equilibrium path bifurcates from the direct deformation mode (curve a) to 
the buckling deformation mode (curve b1, b2) at the critical point B1 or B2.  
The buckling deformation is either symmetric (curve b2) or antisymmetric (curve b1) with 
respect to the crown. Which mode will occur under a smaller load depends on the type of 
the arch. For the in-plane problem of a 2-hinged or clamped arch an antisymmetric buckling 
occurs while for the out-of-plane problem in these cases a symmetric buckling is dominant.  
In the case of an asymmetric arch or a symmetric arch subjected to an asymmetric load, the 
load and deformation increase simultaneously until the maximum or limit load is reached. 
Beyond that point the system becomes unstable (curve c3). 
Most of the earlier studies involve seeking of the critical load by approximating the 
maximum load L1 or L2 by means of an eigenvalue analysis. The eigenvalue analysis yields 
to the critical load B'1 or B'2 by disregarding the displacement before buckling, but when 
taking this displacement into account, it yields to the critical load B1 or B2 as a nonlinear 
problem. 
The relevant research results are adequately reported by Timoshenko and Gere1, Beedle2, 
Galambos3, and Fukumoto5. 
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2.3 Practical analogous analysis of arches 

The analysis and design of arches may be broadly classified according to the arch’s 
response to load and the in-plane mode of failure. These characteristics depend on the type 
of an arch as follows: 

• Slender arches, generally consisting of solid-web rolled or built-up sections, 
subject primarily to axial force in the arch rib (analogous to axially loaded 
columns).  

• Slender arches subject to significant bending and deformation primarily due to 
asymmetric loading (analogous to beam-columns).  

• Stocky arches, frequently of truss form, used especially when high bending loads 
are present; consequently the failure primarily takes place as chord or flange 
failure arising from axial load and excessive bending (similar to any truss subject 
to axial load and moment). 

3. EXPERIMENTAL STUDIES  
An exhibition hall arch was tested in Budapest (Fig. 3). The span of the circular arch was 
40 m, the rise was 11,206 m and the curvature radius was 23,450 m. The width of the arch 
was 2,415 m and the depth varied from 0,320 m at the crown to 0,610 m at the footings. 
The arch was made of AlMgSi - 32.24 6. 
Two series of tests were carried out. In the first series the arch was loaded by a 
concentrated load located  at the quarter point of the span. In the second case the load was 
uniformly distributed over the whole span. Altogether 58 stain gauges were used to 
measure the strains, and the displacements were measured by photogrammetric methods. 
The calculated and measured bending moments are shown in Fig. 4 in the case when the 
concentrated load reached the level of 80 kN (the moments in the figure can be multiplied 
by 10, so the dimension is kNm).  
 

 
 

Figure 3: Test arch with                          
40 meters span 

Figure 4: Measured and                                
calculated moments 
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The values differ from each other because of the following reasons: 

• The real axis of the arch differed from the theoretical one. 

• In the calculations, the connectors were supposed to have constant rigidity, while 
in reality their buckling decreased their efficiency and resulted in increased 
moments and deformations. 

Finally, the failure process under uniform load is shown in Fig. 5. The failure started due to 
rib buckling at the place where the shear force reached its maximum. The measured failure 
load intensity was 570 N/m2. The corresponding calculated value was 648 N/m2. 

 
Figure 6: The collapsed arch 

  
Figure 5: The process of collapse Figure 7: The collapsed arch detail 

4. NUMERICAL ANALYSIS OF TWO SAMPLE BRIDGES  
In this clause two numerically studied sample arch bridges are presented. The first example 
is a 78,95 m span Langer girder railway bridge with an orthotropic deck7. The second 
example is a 64,4 m span highway steel arch bridge with a steel-concrete composite 
stiffening girder8. The main dimensions of the bridges are shown in Fig. 8 and Fig. 9, 
respectively. It can be noted that in the previous case the arches are laterally connected to 
each other at three levels, but in the latter case they stand separately (individual arches). 
The bridges are subjected to loads of Structural Eurocodes. The vehicle models are LM71 
and LM1 according to EN 1991-29. 



 

 

 

6

f =
 1

4,
25

8 
m

L = 78,95 m

b = 86,681 m

R=64,935 m

 L=64,40 m

f =
11

,0
m

b=69,299 m

R=52,629m

 

  Cross-beam:
  Web: 676-715/14
  Flange: 350/22

Ballast bed 50 cm
Concrete  5 cm
Servipak Insulation  15 mm
Orthotropic plate 16 mm

3×600=1800 3×600=1800

3750

750

750

1435

14
74

582

750

22
40

6000

73
0

830

 

 

3250 4000 4000 3250
14500

Composite
deck

900400 4000 4000 400 1500

2,5%

2400900

92
39

13100

Stringers:
upper flange: 400-30
web: 1000-12

Cross beam:
upper flange: 300-20
web: 1000-14
bottom flange: 600-40

2,5%

15
00

Layers:
Rolled asfalt  2 x 4 cm
Monolithic asfalt  4 cm
Insulation  1 cm
Conrete slab  15-25 cm

Rod hanger,
d = 100 mm

Upper flange: 1000-20
Web: 800-30

 
 

Figure 8: Langer girder railway bridge with 
an orthotropic deck 

Figure 9: Highway steel arch bridge with 
steel-concrete composite stiffening girder 

For calculation of the sample bridges two kinds of finite element models, Model 1 for the 
railway bridge and Model 2 for the highway bridge, are built up. The analysis is carried out 
using AXIS VM software program package developed for civil engineering purposes10. 
Each model is based on three-dimensional idealisation of the bridges. Linear material 
properties are used. For the steel-concrete composite deck in Model 2 the effective modulus 
method is applied. In Model 1 the orthotropic deck with the cross girders and the lower 
chord and in Model 2 the steel-concrete deck (concrete slab with connectors, stringers and 
cross beams) are modelled with shell elements, while in both models the arches (in case of 
Model 1 the upper lateral struts as well) and the hangers are built up by beam elements. The 
latter elements provide to examine the arches and auxiliaries during buckling analysis. As a 
result of finite element analyses, the average Euler critical normal forces Ncr of one arch 
element are 27,74 MN (Model 1) and 105,24 MN (Model 2), respectively. 

5.  BUCKLING ANALYSIS OF THE SAMPLE BRIDGES BY THE 
EUROCODE  

The EN 1993-2 standard11 provides two options to check the buckling of an arch or 
compressed members of bridges, namely method based on the determination of elastic 
critical parameter ncr, or  approximate design charts to determine the buckling length.  
In case of the first option the Euler critical normal force Ncr for the relevant compressed 
member using parameter ncr can be determined (Ncr = ncr ⋅ NEd).  
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So the relative slenderness parameter  

 
cr

y

N
fA ⋅

=λ  

can be obtained, where 
NEd is the normal force due to effects, 
A is the area of the compressed member and 

yf  is the yield strength of the material. 

Finally, the reduction factor χ as function of parameter λ and consequently the buckling 
force Nb.Rd can be determined and the condition Nb.Rd ≥ NEd can be fulfilled. It is worth 
noting that in a structure for a relevant compressed member, the Euler critical normal force 
Ncr is always constant, i.e. Ncr does not depend on the magnitude of the load. 
For the second option the Annex D of EN 1993-2 standard11 presents design charts for the 
determination of buckling factors regarding to in-plane and out-of-plane buckling of the 
arch, which enables approximate calculations.  
Using the average Euler critical normal forces Ncr along the arch or approximate design 
charts, the arch elements of the two bridges can be checked.          
From the “exact” and the approximate calculations it can be concluded, that in the in-plane 
buckling analysis the results of the two methods mentioned above differ only slightly from 
each other.  In the case of out-of-plain buckling, however, the differences are remarkable. 
This means that the approximate method, i.e. design charts, can be used only for 
preliminary calculations.  

6. TEACHING OF STABILITY PROBLEMS  
As it can be seen above, solving of stability problems has a great variety of possibilities. 
Even theoretically solid solutions do miss and that is why an overall picture of the different 
methods may remain unclear. This is even more obvious in teaching surroundings, where in 
a short time the theories as well as practical application methods should be introduced. 
According to the long-term teaching experience of the present authors, simple pin-ended 
column’s buckling theory based on Euler’s solution should be the one to start with. This 
solution leads to an ordinary second order differential equation, whose solution with actual 
boundary conditions leads to a mathematically solid result. That is easily understood by 
young students, although the physical reality would remain somewhat unclear. After that 
the different boundary conditions of the same column should be introduced emphasising the 
difference between the theoretical and the real practical cases. Consequently the changes 
due to material yielding and the corresponding buckling curves used in codes should be 
introduced emphasising the semi-empirical result of the column buckling analysis. 
Lateral buckling of straight beams was not discussed above, but because of its importance it 
should also be included in educational courses on the basic university level.  
Finally, in-plane and out-of-plane buckling of arches are theoretically complicated subjects 
that commonly are left to be taught in advanced courses of structural mechanics. Here, 
more than elsewhere, sophisticated computer programs are involved even in simpler cases. 
Because such programs are not always available, stability control of arches often remains 
uncovered. In the case of big projects, however, such study is needed and carried out, as 
shown by the examples discussed in Chapter 4. 
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7. CODE WRITING 

In many cases the codes are written in such a form that the real physical behaviour cannot 
be followed. An improvement would be, if the mathematical formulation of the code 
procedure and equations at least were presented in another way and the symbols familiar 
from theoretical studies were used. In lateral stability calculations at least, for instance, 
symbols known from the warping torsion theories should be used rather than physically 
unobvious calculation methods presented in codes internationally. 

8. CONCLUSIONS 
During the design of a real structure the buckling analysis can be carried out by using firstly 
the approximate methods presented in codes and secondly the so-called “exact” methods 
based on analytical or numerical analysis. 
A stability process varies a lot depending on which method is used: analytical, numerical, 
experimental or design codes. Their differences make it difficult to get an overall view on 
them. They also lead to different results, which increases the engineers responsibility to 
verify the applicability of the solution. In all cases the model selection is of main 
importance. 
For future code writing attention should be paid on theoretical studies of stability problems   
and international harmony. 
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