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ABSTRACT 

The objective of this paper is to demonstrate an approximate method whereby eigen 
buckling modes from a shell finite element method (FE) analysis of a thin-walled member can 
be quantified in terms of the fundamental buckling classes, namely, global, distortional, local 
or other. The buckling classes are defined using the mechanical definitions employed in the 
constrained Finite Strip Method (cFSM). The cFSM base vectors are used as an approximate 
basis for the general deformations associated with an arbitrary FE buckling mode. 
Transformation to the approximate basis introduces error, which is minimized in a vector 
norm sense. The resulting identification (and its associated error) is sensitive to FE mesh 
discretization, the selected number of cFSM half-waves considered, and boundary conditions, 
as shown herein. Overall, the approximate method is shown to provide a potentially powerful 
means to perform modal identification of arbitrary FE buckling modes.  

 
 

1. I�TRODUCTIO� 

 
In the behaviour of thin-walled columns buckling has crucial importance. It may take place 

in various forms, but usually three basic classes of buckling modes are distinguished: global, 
distortional, and local. Though widely accepted definitions for the classes do not exist, they 
are usually defined on the basis of in-plane cross-sectional deformations. However, it is not 
the deformation pattern that makes the distinction important, but rather the post-buckling 
behaviour. Generally, global buckling has no post-buckling reserve, local buckling potentially 
has significant post-buckling reserve, and distortional buckling has moderate post-buckling 
reserve. Existence, or lack thereof, of post-buckling reserve greatly influences the member 
strength, thus it is important to be able to properly identify an arbitrary buckling mode.  
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Due to advances in computation, the calculation of buckling modes and critical forces is no 
longer a challenging task. For thin-walled members, most generally the problem is solved by 
the finite element method (FEM) using shell elements. However, FEM analysis typically leads 
to hundreds of buckling modes, most of them apparently interacted from modes of various 
classes. Given a lack of any quantitative method, the identification is typically done by visual 
inspection - which as a tiring, but, more importantly, highly subjective process. 

A new approach to buckling mode identification is presented in this paper, see also [1]. 
The method employs a special system of modal base functions that have been recently 
proposed by the Authors [2-4]. The modal base functions are derived by an appropriate 
transformation of the base functions of the semi-analytical finite strip method (FSM). The 
system of transformed base functions are referred to as the cFSM base functions and have the 
special feature of separating the three (global, distortional and local) mode classes. Thus, if 
these base functions are used to approximate an arbitrary buckling mode (calculated by any 
method, e.g., FEM), contribution of the various mode classes can be determined.   

 
 

2. CFSM BASE FU�CTIO�S 
 

Since cFSM is originated from the finite strip method (FSM), its basic feature is that the 
deformations of the member are expressed via the displacements of the nodes (more exactly: 
nodal lines), i.e., via the d displacement vector. Moreover, in accordance with the essence of 
cFSM, the space of deformation fields determined by the FSM displacement degrees of 
freedom (DOF) are separated into G, D, L and O sub-spaces corresponding to global, 
distortional, local and other deformation mode classes, respectively [4]. The separation is 
based on mechanical criteria, and is realized by defining a constraint matrix, R, for each 
deformation mode class. Namely, RG, RD, RL and RO represent the transformation from the 
original FSM nodal system to the modal system of cFSM. Each R defines a subspace 
consistent with a given deformation mode class and the columns of R are the linearly 
independent base vectors for that sub-space. Since displacement vectors always represent 
displacement functions, the columns of R define linearly independent base functions for the 
sub-space. Since the G, D, L and O subspaces are nearly always multi-dimensional, generally 
an infinite number of base vectors (functions) is possible to define the subspace. However, if 
mode contributions are to be calculated, it is strongly advantageous to use othonormal base 
vectors (functions). Thus, both orthogonalization and normalization should be performed.  

According to cFSM, orthogonalization is completed by solving the constrained eigen-value 
problem for the member, separately for all four sub-spaces: 
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where subscript M may be G, D, L or O, Ke and Kg are the elastic and geometric stiffness 
matrix for the given member, ΦM is the matrix of eigen-vectors, ΛM is the diagonal matrix of 
the eigen-values, and KeM and KgM matrices may be interpreted as the constrained elastic and 
geometric stiffness matrices, respectively. As a result of Eq. 1, the system of original base 
vectors, the columns of RM, are transformed into a system of orthogonal base vectors, the 
columns of ΦM. 



 

 Normalization of the orthogonal base systems can be carried out in a variety of ways; here, 
one of the simplest is selected: vector normalization. Vector normalization yields reasonable 
results if a regular cross-section discretization is used (other normalizations are briefly 
discussed for cFSM in [5]). For vector normalization, the ΦM,i column vectors of the ΦM 
matrices are normalized (or in other words: scaled) in a vector sense so that each (orthogonal 
and normalized) φi = ΦM,i/|| ΦM,i || vector satisfies that φi

T
 φi = 1. 

 
 

3. APPROXIMATIO� OF FEM DISPLACEME�TS 
 

Once the ϕ  cFSM base functions are known, it is possible to approximate any δFE FEM 
displacement function as a linear combination of the cFSM base functions and c combination 
factors. The error in this approximation may be expressed as follows: 
 
 ∑−= ϕδδ cFEerr  (2) 
 

where ∑ ϕc  denotes (symbolically) the linear combination. Following the logic used in 
normalization of the base functions, the minimization will be completed on the error vector 
(instead of error function), by minimizing the vector norm as follows. 
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where ΦΦΦΦ is the matrix of orthonormal cFSM base vectors, c is the vector of unknown 
combination factors, and dFE is the displacement vector calculated by FE analysis. Expanding 
Eq. 3, the function to be minimized may be expressed as: 
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which leads to a linear system of equations to be solved for c: 
 

 0
)(
=

∂

∂

c

cf
 → FE

TT
dΦΦcΦ =  (5) 

 
After calculating the combination factors (elements of c), pi participation of an individual 

buckling mode (or base function) can be calculated. Moreover, taking advantage that within 
the base functions the various buckling classes (i.e. global, distortional or local) are separated, 
the pM participation of a class can be expressed as follows: 
 
 ∑=
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allM
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where ci is an element of the c vector, while the M denotes that summation should be 

performed over all elements of a given mode class. The error of approximation can also be 
measured, e.g. as the norm of the error vector relative to the norm of the displacement vector 
(i.e., a “normalized” version of the norm of the error vector) 
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4. �UMERICAL RESULTS 
 

To illustrate the application and capabilities of the proposed identification method, a 
parametric study is completed on a symmetric lipped channel (C-shape) column. The column 
length is 1200 mm, with a web height of 100 mm, flange width of 60 mm, lip lengths of 
10 mm, and thickness of 2 mm. Note, the dimensions are for the mid-line, and sharp corners 
are employed. Steel material is assumed with a Young’s modulus of 210 000 MPa and 
Poisson’s ratio of 0.3. For loading, a uniformly distributed concentric force is applied. Figure 
1 illustrates the cFSM base functions by showing the typical in-plane deformed cross-section 
shapes (i.e., these are the in-plane visualization of the φi’s). 

 

     
G1 G2 G3 D1 D2 L1 L2 L3 L4 L5 L6 

Figure 1:  Three global, two distortional and the first six local modes (displaced/deformed cross-sections) 
 

The FE calculations are conducted in ANSYS [6], using 4-node, 24-DOF shell elements in 
a highly regular (rectangular) mesh. The longitudinal dimension of the finite elements is 
constant along the member length, and is defined so that the aspect ratio of all the shell 
elements is close to 1. In the numerical studies presented herein the following parameters 
were considered: (i) cross-section discretization, (ii) minimum wave-length of the base 
functions, and (iii) different boundary conditions. 

Four different cross-section discretizations are used, denoted by the numbers of sub-nodes 
within the flanges, web and lips, respectively, e.g., 2-4-1 implies 2 sub-nodes in each of the 
flanges, 4 in the web, and 1 in each of the lips, which totals to 16 nodes or 15 elements in the 
cross-section. The considered cases are: 1-3-0, 2-4-1, 3-5-1, and 4-6-2, which lead to the 
following numbers of displacement degrees of freedom (DOF): 2442, 5088, 7410 and 11376. 

Theoretically, the longitudinal distribution of the cFSM base functions can be an arbitrary 
number of sine half-waves. Practically, the maximum half-wavelength to be considered is 
equal to the member length. The minimum half-wavelength is considered as a parameter, 
expressed as the ratio of the minimum half-wavelength considered to the length of a finite 
element. In the presented study 1×, 2×, … 6× are employed, where q× implies a minimum 
cFSM half wave-length equal to q× the finite element length, and smaller q implies a larger 
number of cFSM base functions. Thus, the number of applied base functions significantly 
varied in the presented studies, ranging from 264 (1-3-0, 6×) to 7488 (4-6-2, 1×). 

Finally, five boundary conditions (BC) are investigated. In the case of ‘FSM’ boundary 
conditions, the nodes at the supports are restricted from translation, but rotation and 
longitudinal warping is left free. (Note, this BC exactly corresponds to FSM with a single 
half-wave along the length; for multiple half-waves FSM-like BC would be different.) The 
other boundary conditions include ‘GF-LP’ which represents globally fixed, locally pinned 
end restraints, ‘GF-LF’ which corresponds to both globally and locally fixed condition, while 
in the case of ‘LW’ and ‘LF’ options only either the web or the flanges are globally fixed and 
locally pinned (i.e., restrained against translations but free to rotate). It is worth noting that the 
applied cFSM base functions are all sine functions in the longitudinal direction, thus they 



 

violate many of the considered boundary conditions. However, as shown here, these same 
cFSM base functions are able to reasonably approximate the FE displacements in the mid 
length of the columns for many buckling modes and thus still provide useful identification. 

For all of the analyzed cases the first 50 FEM buckling modes were calculated. This covers 
those modes where the buckling load is smaller than (approximately) 3 times the minimum 
(first) buckling load. For each buckling mode the cFSM modal identification approximation 
as described herein is performed. The accuracy of the cFSM approximation is measured by (i) 
error, as defined in Eq. (7), (ii) the average error of the first n cases (e.g., where n = 1..50), 
and (iii) the number of observations (among the first 50 modes) with an error >5%.  

Results for selected modes are presented in Table 1 where the G, D, L and O participations, 
as well as the calculated error, are given for 8 FE buckling modes. Table 1 results are 
calculated considering FSM-like end restraints, 3-5-1 cross-section discretization, and 3× for 
the cFSM minimum wave-length. In this case, 3× implies a maximum of 21 half-waves along 
the member length. The corresponding deformed shapes are presented in Figure 2: both FEM 
solutions (dFE) and their cFSM approximations (ΦΦΦΦc) are shown.  

 

mode 1 mode 5 mode 13 mode 17 

        
ΦΦΦΦc dFE ΦΦΦΦc dFE ΦΦΦΦc dFE ΦΦΦΦc dFE 

 

mode 18 mode 19 mode 20 mode 24 

        
ΦΦΦΦc dFE ΦΦΦΦc dFE ΦΦΦΦc dFE ΦΦΦΦc dFE 
Figure 2:  cFSM approximation (ΦΦΦΦc) of FE eigenmodes (dFE) for FE with FSM-like end restraints 



 

FE mode nr 1 5 13 17 18 19 20 24 

G 85.9 % 0.5 % 0.2 % 1.3 % 1.1 % 0.6 % 1.1 % 3.3 % 

D 5.5 % 38.4 % 8.6 % 82.5 % 64.1 % 26.7 % 36.8 % 28.8 % 

L 0.2 % 58.2 % 88.7 % 12.7% 31.4 % 68.1 % 56.8 % 62.3 % 

O 8.4 % 2.9 % 2.5 % 3.5 % 3.4 % 4.6 % 5.4 % 5.5 % 

error 0.0 % 2.7 % 1.0 % 0.7 % 74.9 % 1.8 % 89.0 % 99.5 % 

Table 1: GDLO participations for the selected modes 
 
For many of the modes the cFSM approximation is excellent, as both the deformed shapes 

of Figure 2 and small error in Table 1 indicates (see, e.g., modes #1, #5, #13, #17 and #20). 
Further, the GDLO participations are in accordance with the engineering expectations: mode 
#1 is clearly global (flexural-torsional), #17 is dominantly distortional, #13 is local, and #5 
and #19 are mixed local-distortional modes. However, cases also exist with significant errors, 
as can bee seen in both the deformed shapes of Figure 2 and error values of Table 1. From 
Figure 2 it is clear that both #18 and #20 are mixed local and distortional modes, but in 
neither case is the cFSM approximation able to reproduce the small local waves. This is even 
more evident in mode #24, which is clearly a local buckling mode with 24 longitudinal half-
waves, therefore the applied maximum 21 longitudinal waves in the cFSM base functions are 
simply not enough to properly handle this buckling mode.  

For FSM-like end restraints sensitivity of the cFSM modal identification to mesh 
discretization and minimum cFSM half-wavelength is summarized in Figure 3a and b, 
respectively. Figure 3a shows that finer cross-section discretization significantly enhances the 
accuracy of the approximations, but higher modes tend to have larger error regardless. 
Considering that higher modes typically include buckling modes with smaller wave-lengths, it 
is hypothesized that in some cases the source of the error is the limited accuracy of the FEM 
displacements due to the selected mesh density. Of course, the selected mesh density highly 
depends on how many and what type of buckling modes are to be identified. 

Figure 3b highlights the importance of the number of cFSM base functions considered. As 
smaller wave-length base functions are added, the number of erroneous cases decreases, 
especially in the higher buckling modes where small wave-length modes are more likely to 
occur. The results suggests that if the cFSM base functions are to provide a reasonable 
approximation of higher FE modes the minimum half-wavelength of the cFSM base functions 
should not be greater than 2× to 3× of the finite element longitudinal length, and certainly no 
longer than that of the buckling half-wavelength of the modes that are desired to be identified.  
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Figure 3:  Sensitivity of cFSM approximation for FSM-like end restraints 
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(a) boundary cond. (3-5-1 mesh, 2× min. half-wave) (b) minimum half-wavelength 

Figure 4: Sensitivity of cFSM approximation for other end restraints  
 
The sensitivity of the cFSM modal identification approximation to boundary conditions 

(end restraints) and the minimum half-wavelength of the cFSM base vectors is shown in 
Figure 4. Figure 4a shows that mode identification works for various BC-s, with the definite 
exception of LW option where only the web is supported, and Figure 4b shows that the  
selected minimum half-wavelength for the cFSM base functions has significant effect on the 
accuracy. It must be mentioned, however, that increasing the number of cFSM functions (by 
decreasing the minimal wave-length) may lead to “parasite” solutions: a relatively small error 
may be achieved while the identification is clearly unrealistic. This phenomenon occurs 
frequently in the combination of options LW and 1×.   

Finally, in Figure 5 the proposed approximate identification of the FE solution is compared 
with the cFSM solution itself (as implemented in CUFSM [7,8]). Here the model with FSM-
like boundary conditions, 3-5-1 discretization, and 3× minimum half-wavelength is employed. 
A buckling half-wavelength is manually assigned to each of the 50 modes: for some modes 
e.g., #1, #19 this is readily apparent, for other modes, e.g., #5, more judgment is required and 
in some cases no single half-wavelength can be assigned. Buckling stresses and dominant 
half-wavelengths predicted by the FE and the FSM models are nearly identical, see Figure 5a. 
Modal participation plot (Figure 5b) highlights some of the additional information contained 
in the FE models. In the FSM model only one buckling mode can exist at a given half-
wavelength, but FE models may have different half-wavelengths superposed (e.g., mode #18), 
thus the modal participation shows some scatter about the traditional cFSM predictions. 
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Figure 5:  Comparison of (a) buckling stress and (b) mode participation as a function of half-wavelength 



 

5. CO�CLUSIO�S 
 

An arbitrary buckling mode of a thin-walled member predicted using a shell finite element 
model may be quantitatively identified in terms of global, distortional, local, or other 
deformations (mode classes) through the use of the approximate base vectors defined by the 
constrained Finite Strip Method (cFSM). Through a parametric study of a cold-formed steel 
lipped channel column the resulting modal identification is shown to be excellent, even for 
modes with different wavelengths and cross-section deformations (e.g., local and distortional) 
superposed. Sensitivity to end restraints, finite element (FE) mesh discretization, and the 
minimum half-wavelength employed for the cFSM base vectors is explored. FE Mesh 
discretization must be fine enough, and the cFSM base vectors must employ a small enough 
half-wavelength, to adequately resolve the buckling deformations. The identification works 
with the least error for FSM-like (locally simply supported) boundary conditions, but can be 
applied to different end restraints, too. Research work is underway to explore the accuracy of 
the approximate identification methods to thin-walled members with holes.  
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