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Numerical modelling of shear
connection between concrete
slab and sheeting deck

Noémi Seres

A 0
LLL] LLL}

(THTHT]

Budapest University of Technology and Economics
Department of Structural Engineering
Budapest, Hungary




Introduction

e Structural arrangement

Steel beam
Profile deck } Frictional interlock
Reinforced concrete slab Mechanical interlock — rolled embossments

 Failure modes
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Introduction

e Performance tests
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e Scopes

(i) simplify the experiments

(i) develop an advanced numerical model for the simulation



Experimental program

e Short beam specimens

Geometry: 150x150x700 a

Type: { @ / { @ / {

e Concrete beam

» Reinforced concrete beam {

» Composite beam

— half wave of an open through profile
— with and without rolled embossments

— ~3mm of rim



Experimental program

e Short beam specimens

» Loading — four point bending
» Measured values — mid-span deflection — on all beams

— end-slip on composite
— mid-span strains beams

Verification background for further.numerical. models



Numerical modelling

* Finite element model development

e 1st concete material model B

e 2"d composite connection model > ANSYS

e 3" composite beam model



Reinforced concrete modelling

e Reinforced concrete beam model test #1

— Based on published experiment Quarter beam model:

— 150x250x2800mm -

— Modelling parameters

» Concrete:
— Solid65 solid element
— 4 required input data
— 2 kind of failure surface
* Reinforcement:
— Link8 spar element if discrete

— Material property of Solid65 if smeared



Reinforced concrete modelling

e Reinforced concrete beam model test #1

Input data 1/a 1/b 1/c 1/d 1/e 1/f
Concrete compressive strength -1 69 69 69 69 -1
Concrete tensile strength D 5.1 1 5.1 5.1 Sl
Shear transfer coefficient for open crack - - - 0.1 1 1
Shear transfer coefficient for closed crack - - - 0.9 1 1
Failure surface 2D 2D 3D 2D 2D 2D
Reinforcement
(d = discrete, s = smeared) ¢ : 4 S ¢ 4

» Loading — four point bending

» Small loadsteps — velocity of crack propagation to be low — numerical
stability



Reinforced concrete modelling

e Reinforced concrete beam model test #1

Ill. stress state: 80

Yielding of steel
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Reinforced concrete modelling

Reinforced concrete beam model test #1

— The numerical model show good accordance with published research
— Type of failure surface A

. No significant effect
— Type of reinforcement

— Numerical stability by small loadsteps (slow crack propagation)

| control step |

Reinforced concrete beam model test #2

— New RC beam model by RC short beam experiment
— Progressive model calibration



Reinforced concrete modelling

e Reinforced concrete beam model test #2

1) Full reinforcement, non crushing

887 @ - concrete, shear transfer coefficient=1
7 — : 2) Without stirrups, non crushing
G - concrete, shear transfer coefficient = 1
e @
= = —3) 3) Only tensioned reinforcement, non
g — /‘g‘ ) @___ crushing concrete, shear transfer
= / \ | coefficient = 1
58 \'\ 4) Only tensioned reinforcement, non

: crushing concrete, shear transfer
® coefficient = 0.3

5) Experimental results

6) Only tensioned reinforcement, crushing
concrete, shear transfer coefficient = 0.3
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«— Crack patterns for first crack
and final state
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. ocal models of rolled embossments

e “Fictive” local model

Composite short beam experimental observations

!

Major factors in failure

!

(1) chemical bond,
(2) mechanical bond General factors — MODELLING
- effect of rolled embossments

(3) pull-out of the steel rim. —  Short beam’s specific factors



Local models of rolled embossments

e Local model construction

Rectangular dishing type:

<
Simplified
geometry

Material FE in ANSYS
Concrete Solidé65
Steel Shell181

Frictional interlock Cbnta173=Targel7O




. ocal models of rolled embossments

e Results of the local model
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| ocal models of rolled embossments

e Results of the local model

— Runtime ~5 hours

— Significant increase in runtime when increasing the model size
— Efficient composite beam model

— Embossments — spring

— Spring constant — local model analysis



| ocal models of rolled embossments

o Parametric study by local models

Parameters:
length

— Embossment’s depth ]
— Embossment’s length
— Sheeting thickness

depth

sheeting thickness

Expected results by experimental observations [1]:

— Deeper embossment — higher shear stress value (most significant)
— Longest length — higher shear resistance (limit!)

— Sheeting thickness — significant effect on stiffness

[1] P. Makeldinen, Y. Sun: “The longitudinal shear behaviour of a new steel sheeting profile for
composite floor slabs”, Journal of Constructional Steel Research, 49, 117-128, 1999



Parametric study by local models

e Depth analysis

« Curve’s character remained the same
* Increase in the load when increasing the depth at the end of linear phase
 Significant difference in ultimate loads — tendency not obvious

depth

Depth Load at the end of the linear phase Ultimate load
[mm] [kN] [KN]
10 0.3345 1.304
12.5 0.3588 3.488
15 0.4054 4.055
17.5 0.4095 3.184
22.5 0.4257 3.857
25 0.4340 4.055




Parametric study by local models

e Length analysis

* Increase in load when increasing the length |
» The difference between the ultimate loads in 10% range

* The change of length has not significant influence

l

length
]

TR

Length Load at the end of the linear phase Ultimate load
[mm] [kN] [kN]
15 0.3649 3.604
17.5 0.4054 4.054
20 0.4257 3.812
210 0.4340 4.055
2885 0.4440 3.925
30 0.5292 3.936




Parametric study by local models

o Effect of sheeting thickness

» Increase in stiffness when increasing the sheeting thickness
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Concluding remarks

Novel alternative of experimental analysis (short beam) for composite

connection.

— Tendency of the failure modes became traceable — numerical analysis
Adequate concrete and reinforced concrete model

Numerical local model for fictive rolled embossments

— Basic behaviour modes
— Parametric study < published experiments

Contradiction in the results of the depth and length analysis

!

Chosen experiment < traditional push-out tests

Necessity of new laboratory experiments to prove the results

!

Pilot experimental investigation for local model calibration
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