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FORCES CAUSED BY POST-TENSIONING IN 
CONTINUOUS CONCRETE GIRDERS 

 
Géza Tassi* - Pál Rózsa** 

 
 

ABSTRACT 
 

The paper is dealing with continuous post-tensioned girders in elastic range. 
Different load cases are considered: post-tensioning, total load, a single span loaded. 
The tendon layout is continuous or each span is supplied by an individual cable. The 
tendon is bonded by subsequent grouting, or unbonded. For the possibility of relatively 
simple comparison the solution is given analytically in closed formulae. The method 
gives a way to analyze many other cases.-The application of the force method leads to 
systems of linear equations the coefficients of which have  remarkable properties. In the 
case of a continuous girder with a continuous tendon the matrix is a bordered uniform 
tridiagonal matrix. This property enables to calculate  the inverse by help of the 
Chebyshev polynomials of the second kind. In the case of a continuous girder post-
tensioned in each span separately  the corresponding matrix is a two-by-two block 
matrix, the blocks of its inverse can be obtained  in a relatively simple form. The final 
results can be expressed by means of hyperbolic and trigonometric functions. 

 
 

1. INTRODUCTION 
 

At the very beginning of prestressed concrete construction the two basic forms 
of post-tensioned structures were already known. The classical structures initiated by 
[6] had internal tendons and the ducts were grouted. The grouting was said to solve two 
problems: to ensure the bond and the protection against corrosion. Characteristic early 
examples for the external post-tensioning date back to other early prestressed concrete 
structures suggested by [3], [5]. The advantages and disadvantages of the bonded and 
unbonded  tendons were widely discussed, e. g. by [2]. That time no significant 
difference was supposed between the two systems from the point of view of  protection 
against corrosion. At the same time it was emphasized  that the load capacity in case of 
bonded tendon is generally higher than that of otherwise same member but without 
bond between concrete and prestressing steel, e. g. discussed by [9]..The role of the 
cable layout (among other questions) was shown in [13]. Recently, it is known that the 
problem exists in case of continuous slabs. too [4]. 

To-day it is well known, that the bonded tendons are  endangered by corrosion 
even in the case of a possibly good  grouting. The unbonded and protected internal 
tendons and external cables forge ahead renouncing the better distribution of internal 
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forces and a higher load capacity. It is obvious, that the durability of structures is worth  
of the slightly less favorable development of forces and stresses. However, it is 
advisable to know more about the different sorts of post-tensioned structures. 

 
 

2. FORCES IN VARIOUS POST-TENSIONED CONTINUOUS GIRDERS 
 

There are different numerical procedures to calculate the forces in prestressed 
concrete structures in elastic range. However, an analytical solution, which gives the 
results in explicit forms, has many advantages. It is shown that the calculation of the 
forces in statically indeterminate structures contributes to the determination losses due 
to elastic deformation if there are more subsequently tensioned cables [10]. 

No doubt, the formulae are received in a relatively sophisticated way. Even 
therefore, to show the method and to reach the main objective  of this investigation, i. e. 
the difference between members with bonded and unbonded tendons, some restrictions 
will be made. The structure is a continuous girder over n+1 bays. The span is 
everywhere the same and the cross section is constant. A single tendon is lead along the 
whole girder or each span is prestressed by an individual tendon anchored over the 
supports. The tendon layout  is the same in each bay, otherwise it can be arbitrary. The 
friction is neglected and mentioned shortly in an other point. The other losses are not 
taken in account, or it can be supposed, that the prestressing force is already reduced. 
The prestressing force and its horizontal component will be taken to be equal and the 
axial deformation of the concrete will be neglected. No non-prestressed reinforcement 
will be taken into consideration. It is supposed that the effect of the ducts is constant 
along the whole structure. In case of subsequent grouting a perfect bond is predicted. 
The load is assumed to be the same in each bay or a single bay is loaded. These 
limitations are for the benefit of the comparison between different cases. Nevertheless 
there are practical examples, where the conditions almost fully correspond to the given 
assumptions, e. g. in case of strengthening by post-tensioning, see [11].  

To determine the redundant quantities the force method is used. As unknowns the 
moments over the intermediate supports, and in case of unbonded tendons the increase 
of the force in them will be taken. The primary structure is chosen like by [14] as well 
as by [1]. The equations to solve the redundant systems will be written that way that the 
coefficient matrices of the systems of equations - if needed - could be given as 
hypermatrices, the inverses of which are easy to handle as suggested by [8] 
 
2.1. Cases of Tensioning, Cable Layout, Grouting and Loading 
 
2.1.1. Continuous Girder with a Continuous Tendon 

The general layout of the girder is shown in Figure 1. The system of equations of 
continuous girders contain the well known shaped coefficient matrix A. The load vector 
in case of post-tensioning and of total load is to be written by the help of e: 
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2.1.2. Post-Tensioning – Application of the Force Method in General 

In case of post-tensioning, the equation of the force method is the following: 
 

1 1
2 2 1

K K
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I I

Ay e y A e .= ⇒ = −

 
 
2.1.3. Subsequently Grouted Girder Under Total Load   

This case is described by the equation: 
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2.1.4. Girder with Unbonded Tendon Under Total Load 

In this case the basic equation has the form: 
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The inverse of the bordered matrix is 
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Therefore the solution of Eq. (1) will be written as 
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l l l l l l l 

Figure 1 Continuous girder with continuous tendon (schematic sketch) 
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Performing the equations we get 
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The expression eTA-1e is the sum of the elements of the inverse A-1. A 

cumbersome calculation leads to the result: 
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The elements of the vector A-1e  - i. e.  the sum S i  of the row elements of the 
inverse matrix - are the following: 
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For all the above expressions  the parameter θ is defined by 
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So in the expressions (2) and (3)  
 

1

2

1

6cosh
.

θ +
=

 
 
2.1.5. The Load Acting only in One Span 

The definition of the parameter θ is the same as in (4). The solution of the 
equation  for the similar cases of post-tensioning is the following: If a single span is 
post-tensioned 
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In case of a load in a single span  
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If a single bay of a girder with unbonded tendon is loaded 
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After calculation the following  result is received for the unknowns: 
 

( )( ) ( )( ) ( )y
e A e

e A e e A e e A e A e e=
−

+ −⎛
⎝
⎜ ⎞

⎠
⎟− − +

⎧
⎨
⎩

⎫
⎬
⎭−

−
−

− − −
−

2

4
4 42 1

2 1
1

1 2 1 1
1

Q

z s
s t sq s t tzT

T
j j

T
j j ,

 
where j=1, 2, ..., n, and e0 =0. The force in the tendon is  
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The product in this formula is 
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in the upper formula n is odd, in the lower one it is even. 
 
2.1.6. Continuous Girder Post-Tensioned by Tendons Reaching in each Bay from the 
Left Side Support to the Right One  

The general arrengement of the girder is to be seen in Figure 2. If it is supposed, 
that all the tendons are tensioned simultaneously. The force method leads to the linear 
system of equations 
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In case of total load and post-tensioning 
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and in case if a single bay is loaded 
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The inverse can be written in the following form: 
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Figure 2 Continuous girder with tendons anchored at the ends of each span 
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Substituting  into (5) we get  
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substituting it into (8) the unknown support moments are  
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and the forces in the tendons due to external load: 
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Now let us calculate the elements of the inverse 
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2.1.7. Post-Tensioned Girder  under Total Load 

The moment y can be written considering Eq, (5) and (7), substituting Eq. (6), 
the elements of  the vector 
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Making use of the results the unknown support moments yi are  
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the forces yPi in the tendons are the following: 
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For i=2, 3...,n 
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2.1.8 The Girder Loaded in a Single Span 

The unknown moment and tendon forces can be written as 
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Using Eqs. (9), (10) and (11), the unknown moments are  
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The forces in the tendons due to external load at a single span are 
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At the intermediate bays (i=2, 3, ..., n): 
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Finally, the force in the tendon of the last bay due to the load in a single span 
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2.2. Remarks and Statements 
 

The limited extension of this paper does not allow to deal with numerical results 
in detail. Also it was not possible to refer to a previous work [12], where the friction 
was considered on a similar  way, but from an other point of view. It is but to be seen, 
that there are large differences, e.g. in the cracking moments of girders with bonded or 
unbonded tendons, but normally the difference does not exceed 10-12%. It is to be 
mentioned that the method [7] was developed in [1], [9] for a more exact calculation of  
post-tensioned members with unbonded tendons, comparison between  cases of bonded 
and  unbonded tendons has shown in given cases relative large differences in load 
capacity. It can be said that there is no reason to offer the better protection against 
corrosion for the increase of  the resistance of the structure. It is but advantageous to 
have methods for a better estimation of the difference. 
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3. CONCLUSION 
 

The aim of prestressing is to create an advantageous distribution of internal 
forces in concrete members. In case of continuous girders, redundant forces are acting 
due to prestressing. If the primary system is taking fhat way, that the unknowns are 
moments, their signs are normally opposite to those of moments due to gravitational 
loads.  Applying various post-tensioning, the forces can be calculated aanalytically for 
special regular arrangements of the girder and the cable. The analytical solution 
presented in the paper enables to carry out parametric analyses and other studies The 
applied procedures of the linear algebra enable enable to have a wider overview on the 
behaviour ot these structures. 

 
 

SYMBOLS  
 

A, B, D = coefficient matrix, blocks of hypermatrix   Q = intensity of external load 
b = bordering vector      r = auxiliary notation 
c = element of block representing the action of tendons  t = reduced laod parameter 
d = corner element of bordered matrix T = symbol of transposed 

 matrix or vector 
e = vector with all unit elements     v = coefficent matrix element for 

 tendons  
ei = vector with the unit element at i     y, y = moments at the supports 
e(n) = vector with n unit elements 
f = parameter representing the prestress    yP, yP = forces in the tendons 
i, j = row and column indices     z = corner element 
n = number of unkown moments     φ, θ  = parameter  
P = intensity of prestressing force     Ψ = auxiliary notation 
q = parameter of external load      KI,  KII = stiffness considering  

the ducts and grouting 
respectively 

s = reduced load parameter  
 
The quantities are reduced to a dimensionless form. To have the real results MN and m 
are to be used. 
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