Szerkezetek reziliens tervezése szélsőséges hatásokra (Resilient design of structures subjected to extrem effects)

Elsődleges fülek

Erre a témakiírásra nem lehet jelentkezni.
Nyilvántartási szám: 
18/66
Témavezető neve: 
Témavezető e-mail címe:
vigh.laszlo.gergely@emk.bme.hu
A témavezető teljes publikációs listája az MTMT-ben:
A téma rövid leírása, a kidolgozandó feladat részletezése: 
The term resilience in general reflects the capability to adapt and respond to changing conditions while maintaining the functionality. With respect to the built environment, resilience of a structure is often measured in terms of repair time and associated direct as well as indirect costs, given that the structure suffered from certain failure. 
New design concepts based on resilience is being developed worldwide. Resilient design does not address prescriptive design verifications, but focuses on the resilience of structure after failure: how large is the functionality loss, how quick and economical the repair work is and how long it takes to recover the full functionality. The resilience analysis invokes the following steps: a) hazard identification (known and unforeseen impacts); b) evaluate vulnerabilities; c) analyse scenarios and impacts; d) establish performance targets; e) mitigate risk. Resilient design can involve refining designs, stress testing solutions, designing adaptable, flexible redundant structures, redundant infrastructure.
The methodology is relatively new and thus public standards like Eurocodes do not address it.
Aim of the current research is to adapt resilience analysis framework for quantification of technological resilience of building and/or bridge structures, define the proper performance parameter and define performance targets. Aim is to develop conceptual design provisions for resilient design. This will require the resilience analysis of existing – “pre-Eurocode” – structures as well as structures that are designed in accordance to current design provisions.
 
The proposed work phases could be classified as follows: 
    1) Literature review. 
    2) Adaptation of existing or developing new framework for technological resilience analysis of structures.
    3) Evaluation of applicability of deterministic and stochastic assessment methods.
    4) Definition of archetype buildings.
    5) Identification of extreme hazards for selected building archetypes. 
    6) Assessment of vulnerabilities of the archetype structures for the selected scenarios. Risk assessment.
    7) Definition of proper performance parameter and performance targets.
    8) Design concept proposals, design method proposal and recommendations for future works.
 
A téma meghatározó irodalma: 
1) DR Godschalk. Urban Hazard Mitigation: Creating Resilient Cities. Natural Hazards Review. Vol. 4, Issue 3 (August 2003)
2) The IMPROVER project – Improved risk evaluation and implementation of resilience concepts to Critical Infrastructure. H2020 project. 2015-18. http://improverproject.eu/ 
3) DR Lombardi, JM Leach and CDF Rogers. Designing resilient cities: a guide to good practice (EP 103). Urban Futures Team. BREPress (11-Apr-2012)
4) Managing and responding to disaster. The Institution of Civil Engineers. ICE. 15 Sep 2017
5) D Lange, D Honfi, J Sjöström, M Theocharidou, G Giannopoulos, NK Reitan, K Storesund, L Melkunaite, H Rosenquist, L Petersen, R Almeida, B Rød, C Bouffier, E Serafinelli, ML Lin. Framework for implementation of resilience concepts to Critical Infrastructure. Ref. Ares (2017)5879401 - 30/11/2017.
A téma hazai és nemzetközi folyóiratai: 
1. International Journal of Impact Engineering 
2. Engineering Structures
3. Constructional Steel Research
4. Magyar Építőipar
5. Repüléstudományi Közlemények
A témavezető utóbbi tíz évben megjelent 5 legfontosabb publikációja: 
1. LG Vigh, Á Zsarnóczay, T Balogh. Eurocode conforming design of BRBF – Part I: Proposal for codification. JOURNAL OF CONSTRUCTIONAL STEEL RESEARCH 135: pp. 265-276. (2017)
2. Á Zsarnóczay, LG Vigh. Eurocode conforming design of BRBF – Part II: Design procedure evaluation. JOURNAL OF CONSTRUCTIONAL STEEL RESEARCH 135: pp. 253-264. (2017)
3. J Simon, LG Vigh. Seismic Reliability Assessment of Typical Road Bridges in Hungary. JOURNAL OF EARTHQUAKE ENGINEERING 21: pp. 1-29. (2017)
4. T Balogh, LG Vigh. Complex and comprehensive method for reliability calculation of structures under fire exposure. FIRE SAFETY JOURNAL 86: pp. 41-52. (2016)
5. J Simon, LG Vigh. Seismic fragility assessment of integral precast multi-span bridges in areas of moderate seismicity. BULLETIN OF EARTHQUAKE ENGINEERING 14:(11) pp. 3125-3150. (2016)
A témavezető fenti folyóiratokban megjelent 5 közleménye: 
1. Román Zs, Kiss RM, Vigh LG. Az épületeken kívüli robbantások tervezési követelményei. MAGYAR ÉPÍTŐIPAR 60:(4) pp. 129-134. (2010)
2. Román Zs, Vigh LG. Acélszerkezetű irodaház tervezése külső robbanásteherre. REPÜLÉSTUDOMÁNYI KÖZLEMÉNYEK (1997-TŐL) XXIV:(2) pp. 142-155. (2012)
3. Á Zsarnóczay, LG Vigh. Eurocode conforming design of BRBF – Part II: Design procedure evaluation. JOURNAL OF CONSTRUCTIONAL STEEL RESEARCH 135: pp. 253-264. (2017)
4. LG Vigh, Á Zsarnóczay, T Balogh. Eurocode conforming design of BRBF – Part I: Proposal for codification. JOURNAL OF CONSTRUCTIONAL STEEL RESEARCH 135: pp. 265-276. (2017)
5. LG Vigh, GG Deierlein, E Miranda, AB Liel, S Tipping. Seismic performance assessment of steel corrugated shearwall system using non-linear analysis. JOURNAL OF CONSTRUCTIONAL STEEL RESEARCH 85: pp. 48-59. (2013)

A témavezető eddigi doktoranduszai

Eduardo Charters (2014/2018/2019)
Balogh Tamás (2013/2016/2018)
Simon József (2012/2015/2016)
Zsarnóczay Ádám (2010//2014)
Nyírõ Zsolt (2009//)
Kezh Sardasht Sardar Weli (2019/2023/2023)
Státusz: 
elfogadott